
RD-A144 232 EMBEDDED SYSTEM DESIGN WITH ADA AS THE SYSTEM-b lU DE1
LANQUAGE(U) ARMY COMMUNICATIONS RESEARCH AND
DEVELOPMENT COMMAND FORT MONMOUTH NJ T J WHEELER 1.984

UNCLASSIFIED F/'O 9/2 N

mhhmhhhhhmhhII..-II

.. * .2.j, a...O~. 4L -7.-7a* :. . .s - .. -

1.2 11. 1122

=IRCF REOUTO TESCAR

ION A BUEA OF STDARS163-

AD-A144 232/

EMBEDDED SYSTEM K
DESIGN WITH ADA

AS THE SYSTEM
DESIGN LANGUAGE

THOMAS J. WHEELER

SOFTWARE TECHNOLOGY DIVISION

This document has been approvedm
forpbli relecise and sale; itsdistrbtif nIs unlimited.

.184 08 09 098

IJW w lln
iU.S.AIA C0 IA4" 5(Aq~bvD Tow cow"VI

ABSTRACT

Recent research In the software engineering field nas produced a
number of tichniques or rationale for structuring the understanding of
systems. Many of these techniques are applicable to the design of
embedded computer systems and produce designs whose structures are
easily expressible In the Ada language. The Ada language has a structure
which allows the design o systems to be expressed independently ot Its
Implementation and thus can be a good system design languaae for use
with these technlqUeS.

This Paoer describes the software design problem In the development
of embedded computer systems and ShowS how the Ada language can be used

- t "as a syster design language as well as a system Implementation lanauage
to alleviate these problems. The essential point ot this paper is that
usina Ads as a system design language encourages the designers to use
the recently developed techniques and theory to develop better structures
for their systems and then Implement the systems in the same language
thus preserving that structure in the product.

-.

• or

1"1

f.

k-

. • --

CONTENTS

I6 Introduction*

11. Modularization.

III* The Ada Lanquaqe,

Ive System Architecture Designs

V. System Component Desig9n,

vie Conclusiors.

APPENDICES,

I, System deslqn example,
lie System Desiqn Language syntax summary.

- -- < - - -

I Introduction.

In response to the explosive growth In the cost of development
and maintenance of software systems, there have been a larqe numberat theories and techniques developed in the area of softtware design

and development. Some of these are structured programming. top-down
design and implementationt structured analysis and design(21)p

*stepwise refinementC23)v Information hldlne(18) and programming teems
and walkthroughsl24). The central aim of all of these 1 to provide
intellectual control of a design by a systematic decompositlon. and
abstraction at the problem Into component modules and composition
of these modules Into the system.

Ohile most of these techniques have produced impressive results#
with measured gains of 4-6 times increase In productivityC2) not being

, uncomon, the ete of these techniques In the embedded systems area has
been limited. The reasons for this are varied. Some are technical such
as lack at a suitable high level language and the techniques and
compilers to go with them. However, other reasons are psychological
as for instance, that the time to Investigate design techniques and
to learn to use a new language i Viewed as not affordable during

* these normally time constrained developments.
The technical barriers to the use of modern software engineering

tneorles and techniques are being overcome with the introduction of
a langueae and techniques specifically designed for embedded computerapplications* This paper addresses'the effects of the Department ofDefense's Ada languageCI) on the design process for embedded systems.

One of the reasons that the Ada language is so Important to the design
process is that the Ada language is structured to allow It to be used
as a system design language as well as a programming language.-A system
design language (SO) Is a formal means at documenting the structure of
the design of a system without the necessity of providing or retering to
an implementation at the system. Ada provides this means by separating
the specifications of the components trom their implementations and by
allowing Interconnection of components only by those means documented
in the specifications of the components.

One of the main themes of this oaper Is that the constraints on
the system structure Imposed by the use of the Ada language as the
means for documenting the system's design not only cause the system's
design and implementation to be easier but also cause the resulting
system to be more maintalkable. Additionally# the use of Ada as both
the desien and Implementation language causes the documentation Ot the
system to be more controlable since the major part of the documentation,
even at the design level, is the system (La. the program) itself*

One of the main criteria used In the design of the Ada languae-
was that the language should aid In the design of reliable systemiCS,22).
This criteria led to the incorporation of modularizatlon by packaging
of named entities as the main basis(20) for structuring at software
systems. In addition Ada provides a distinct separation of the
specification of the visible named entities of the module from the
implementation of the module. This allows the structure, or the -
architecture, of the system to be documented as the interconnection
of the interfaces of the modules without reference to the implemen-
tations of the modules. The use at Ada as a system design language
Is a result of this ability to document the structure of a system
ustna only the specifications of packages and their Interconnection.

tII modularlzations

The worlds of mechanical design and electronic system design have
long used the concept of modularizatlon and have well developed methods
of documenting designs In terms of their component modules, ie. blueprints
and schematic drawings respectively. Ada provides a means ot documenting
Software designs and communicating those design to others which, when
supplemented alth Its equivalent graphic drawing, Is the equal of the more F
mature documentation methods mentioned above, It Is the equal because the
basis Is the same. The basis is that a design is represented as an
Interconnection ot the Interface characteristicts of components. This
interconnection is a model of a well structured understanding of the
system(21). It is the interface characteristics which actually define
the components which are used In the design because the interface
characteristics are all that the user of the component needs to use the
component and all that the designer of the component needs to build the
component(IS),

The view of modularization embodied in Ada has evolved slowly over
the past decade. The main reason for this slowness is that of the two
means of modularization, decomposition' and abstraction, decomposition

" was viewed as the method of modularlZatlon while abstraction was viewed
as a mental tool rather than as a language supportaole mechanism. In view
of the way a programming language influences the way that people think
about systems and vice versa# tnIs was both the result and the cause of
the structure of earlier high order'lanquages such as Fortran, Cobol and
Alool. In systems built in these languages, the Interconnection of the
major sub-tasks of the system was viewed as the responsibility of the
operatino system functions such as linkage editing and the system
aeneration process. The Interconnection of the smaller parts of the
systems built In these languages was through the use of global or common
data accessed by the Subprograms from which the systems were constructed.

Modularizatlon by abstraction had Its roots in tne virtual machine
concept(S) and has been influenced by most of the major advances made
by software enqlneerinq research, eg the data typino mechanism ot
Pascal(14), information hiding(IS,19), abstract data types(7,8) and
module interconnection lanquagesC4). The consensus aevelooed in the
research results Is that &%software system can and should be designed
and constructed as an interconnected network of software objects of
abstract data types. Abstract data types are constructed out of a set
of values, which may be a complex composite of simpler values, and a
set of operations which is applicable to the values, with no otner
operations allowed. Each of tne objects of these types is to represent
Cencapsulate)a particular logical entity such as a design decisionCIG)
or a related set of properties of a logical ltem(7).

A grachical representation of a system modularized in this way Is
Shown in FIG Ia. This system prints reports from local files or, if the
report is not available In the local files, the report manager requests
it from remote tiles and prints it when it has been copied to the local
flies, The explanation of this diagramming method is in FIG lb which is
a diagram of a single generic module where the abstract type or obiect
is indicated by the named box and the resources, ea, types, functions
etc., which are provided by the module and those which are required oy
the module are Indicated Oy the outgoing arrow and the incomming
arrow respectively.

d~.

.,

Iinterpret

I----I init,dlsplayoqetch I--------
I exec I< - - .-----wm ---- I terminal.I

I qetrept

I report I
I manager I
a...---

a a

/\
/getfile \gogetfile

/

I local I I file I
I file I I request I I data I a provided
I access I I handler I I comm I resources

\/ \. / I'-'-m'----ol
\ / I module I

\readf /writef enqueueodegueue I name I\/ \ / I-------In

I in.. .m-- I--------- " ..

I file 1o I I message I I required
- queue I I resources

I readwrlte
I reserve,
I release

I files I

rIG is FIG lb

The Ada lanquage encourages this style of design by having OacKagLnQ
of date and procedures as its large Scale structurinq mechanism. In the
system dlaorammed In FIG Ia, each of the modules becomes a package In Ada.
Par example# the files module In FIG Ia which provides access to the local
file system Is speclfled In Ada as:

package FILE3 Is
type FILE is STRINGC32)u
type LINE Is STRINGCO0)
procedure READCFjin FILEILlout LINE);
procedure WRITE(Pin FILEintin LINE);
procedure RESERV£iLn rzLE)i
procedure RnLEASECrsin rL)m

end FILSI

$Ince a proqramminq language influences the way that peoole think about
systems, the use of Ada over a period of time leads tne designers to the
use of abstract data types as a natural way to visualize system desiqns,

III. The Ada Languag.

The Ada lanouage(1) was designed with three soecific qoals:'
l.rellablllty and malntainability, 2.recognition at Programming as
a human activity and 3.efficiency. The first two of these criteria
drove the structure at the language and Its intended use while the
last filtered the possible Inefficient structures from the language,
The following Is a brief overview of the Important features at the
Ada languaaeo The Ada language reference manual(l) should be consulted
for a more thorough understanding at the language.

m/
Program units.

Ada Is designed to encourage modularlzation and the accompanying
ability to factor and compose a system from separately built parts. In
Ada, a program Is composed from program units, which are subprograms,
Peckages (which define collections of entitIesleo named Items), or tasks
(which define concurrent or parallel computations). Each of these program
units is made up of two parts# a soecification, which contains those
entitles that are visible to other program units thus defining the external
characteristics at the unit, and a body, which contains the Implementation
of these entities and Is not visible to~other units. Units and their parts
are separately comollable.

This separation of the specitication and the Implementation parts
of modules along with the ability to separate compile these parts allows
and encourages both.,tne construction of systems from separately built
Parts and the construction and use of libraries of generally usable
component modules.

Program unit specifications.

The program units from which Ada programs are consrtucted are:
subprograms, packages and tasks. Program unit specifications are named
declarations ahlcn provide the types# objects and operations which can
be used by other program units.

Subprograms are the basic unit for expressing algorithms and provide
the means for naming definable actions. The two Kinds of subprograms are
procedures and functions. A procedure provides the series of actions,
defined in Its body# whenevIr it Is Invoked. It may have parameters to
pass Information Into itself or back to Its Invoker, A function is a
named activity, or operation, which computes a value. It Is similar toV
a procedure but returns a value as the result of Its being Invoked In
an expression.

Packages are the units for encapsulating collections of logically
related data. PacKages define sets of related types, data, operations
or subprograms. Only those entitles which are defined In the visible or
specification part of the Package are allowed to be used by other units.
The Implementation of the visible entities Is hidden In the body of the
package. -

Tasks are the program units for defining operations or procedures
which execute In parallel with other tasks. Tasks define entries which
are the synchronized operations provided for use by other tasks. Multiple
instances of tasks or dynamic tasKs can be declared as objects of tasK
tyoes.The lanquaee allows tasks to be implemented on multiorocessors,
multicomputers or to be interleaved on a single processor. I --

I '

. _ - - m m I . _, - . . - i l nll m i • 4

Proqram unit bodies.

ProQram unit bodies consist of a doelaritive oart, which declares
the entitles which can be used In the unit# and a sequence of statements,
Vhlch defines the implementation of that program unit's actions. These
named entities which can De used by the sequence of statements Include
types, objects, exceptions and other nested program units.

The sequence of statements describes the unit's actions. The
statements can Include assignment of values to variables, Procedure calls
and structuring constructs. The structuring constructs Include *If" and
ecase§ statements for selection, "while"'and ator" loops for iteration
and blocks for temporary declarations and actions.

Tasks are constructed with the statements described above supple-
mented with real time and syncronizatLon statements. These include the
wdelay" statement, the "entry* declaration for providing services to
other tasks, and the "select* and "accept" statements for controling
tne rendezvous which syncronlze tasks. In a rendezvous# either the
requester or the provider of an action arrives at the rendezvous point
before the other. The one which arrives first walts for the other, When
the other arlves, the rendezvous takes place, the action Is performed
and they both proceed with their next statements.

Exceptional conditions, which make It Impossible to continue with
the normal execution of the program, are handled by a sequence of
statements enclosed In an exception handler placed at the end of the
proaram unit. When an exception handler Is Invoked, it replaces the
remainder of thetunit where the exception occurred. Exceptions can be
raised explicitly In the program.

Types

Every object and value in the program has a type. A type consists
of a set of values and a set of operations applicable to the values.
Types are divided Into four classes: scalar, composlte, access and
private types.

Scalar types are both the numeric types(integer, fixed Point and
floating point) and enumeration types which allow programmers to define
ordered sets of distinct enumeration literals to be used as values In the
program. Comoosite types provide the means of defining structured objects
formed from related compohents. Two kinds of composite types are arrays,
which have indexed components of the 5ame type, and records, which have
named components of possibly different types.

Access types are used to construct dynamic data structures by
deftining a mechanism for accessing unnamed objects shich are created
by allocators. Both the contents of the objects and the access values
to the objects may be changed by the program,

Private types are defined in packages and only their names are made
visible In the specification part of the package. All operations on values
of private type variables are defined in the package and both the structure
of the data used to define the type and the algorithms which implement the
operations are hidden In the body Of the package.

Other features

Ada provides a number of other facilities to Provide the Program
desi'ner with complete control of the computer when necessary. These
include representation of entitles, control of Interrupts and machine
code insertion. Input-output Is provided as a library feature rather than
being built into the language. The language provides for generic program
units to encapsulate sets of algorithms applicable to various types.

IV. System Architecture Design.

The quality of a system Is highly dependent on the language In which
the system Is desioned and the language In which the system is built. The
criteria in both cases Is similar, the ease with which the requirements
or problem structure can be modeled In the design, In the first case and
the ease with which the design can be modeled In the implementation , In
the second case. An Ideal language would allow both the design and the
1malementatLon to have a structure which Is an accurate recording of the
solution to the problem.

Almost all of the current high level languages discourage this sort
of mapping of solution into implementation. These languages sole concern
is in the expression of data and algorithms for a single process. This is
fine for small programs but inadequate for large systems. These languages f
have bee" refered to as languages for programming In the small(4). A
system design language SOL provides the means for describing the Inter-
connection information which Is the essence of system structuring and is
analogously refered to as a language for programming in the larqe(4). Ads
is the integration of a language for programming In the small with a
language for programming In the large. As such It fosters a transparent
mappino of both the requirements solution into the design and of that
design Into the implementation,.

Recent research in the software engineering field has produced a
number of techniques or rationals for structuring the understanding of [
systems. The Ada language was designed to facilitate the representing
of designs produced using these techniques. Thus Ada as a system design
language (SDL) fosters the use of these techniques.

The rest of this chapter will present three methods of structuring
systems and snow now Ada documents the resulting designs. The three
Methods are functional decomposition(3), Information hiding(i) andabstract data types(7), These techniques are not used In exclusion of one

another but ratner are complementary of each other. They are normally
used in conjunction with one another for the complementary tasks of
refining and enhancing the design during the system's development process.

1. Functional decomposition.

The functional decomposition or data transformation method of design
will be illustrated as It appears in the analysis and design technique of
structured analysis. Structured analysis(3) is a methodology which uses a
graphical method for functlonaly specifying the structure ot the systembeing designed. This method uses graphs known as "data flow diagrams" in

conjunction with logical data descriptions stored In data dictionaries to
model the structure of the system. The data flow diagram documents the
structure of the system as the logical flow of data items through the
system, shown as labeled arrows# and the transformations which happen to
these data flows, shown as labeled circles or boxes. The structure of a
data Item is documented by a logical definition, Including the naming
and defining of Its components, in the data dictionary.

In use the logical data flows and data transformations are derived
in a three step process. First an existing or envisioned physical system v
is modelled, resulting In a data flow diagram which is labeled with both
Physical data items and physical transformations. Zn the second phase
the hysical model Is transtormLed Into a logical model by abstractingR logical data flows and transforms. Finally the resulting loqical model

is modified until it models a system which fulfills the requirements.
The results of this process can be seen in the following example

design of a stoplight control systems The transformations of data types
(data flows) which tKee place In a stoplight system are diagrammed In
figure 2. The resence or absence ot vehicle in a lane as observed by adetector Is transformed into an approach being either occupied or empty,

V -

The tat attheaop**ChIs ranfored ntoa request tor a green or

tys apordat wonicdeith curninaeo the system, andtantam thet titehish

transform these types.
When these data types (arrows) and their transformations (boxes) are

r named and connected, the *data flow diagram" shown in FIG 2 results, This
diagram can then be used as a basis to model the structure of the system
In Adas This method of design aroduces modules (transformations) which are
~Jetlned by the Interfaces (data flows) between the modules, This structure

* Is easily transformed Into Ada where the modules become Packages or Tasks
and the Interfaces become the visible parts of these modules'(1.. types,
oblecto procedures, functions or entries).

vehicle Approach Request red
present rn-r--- occupied m--- red 4-----rn-r- set *--- yellow
r-----) >1Detectorl -------) 3,Approachl- I ---) > Intersection I-- I Light I-----
absent ----- empty IControl I green I Control I ww-- green

FIG 2.

This data flow diagram is transformed Into the following design
*which Is documented as the visible part of an Ada oroqram(FIC 3)s In

the design the modules detetor, abproach control and intersection
control have two tasks each, one for each direction. The complete
system Is Included in the appendix,

procedure STOP..LIGHT 13 -- main program,
type DIRECTION Is (NE.StE.W)i

package DETECTOR is
task tyve CONTROLUTASX I -- is hardware.

COMTROLlarraYCDIRECTION) ot COt4TROL.,TASK;
end DETECTOR;

package APPROACH 'is
task tyne CONTROLUPTASK is

* entry APPROACH.,OCCUPIED; -- interrupt.
entry APPROACH.EMPTY; -- Interruots
end CONTROL.?ASKI

CONTROL~array(DIRECTIOd) of CONTROL..TASK;
end APPROACH;

packaqe INTERSECTION Is
task tyoe CONTROLqETASK Is

entry REOUESTUGREEN p
entry REQUESTEERXDj
end COITROL.TASM

CONTROL:4rray(DIRICTION) of CONTROL..TASK;
end INTERSECTION1

packae LIGHT 18
task CONTROL Is

entry SET..TOCCOLOR)(DXR: In DIRECTION);
and CON'TR~OL:

end LIGHTr
end STOP.LIGHT1

FIG 3.

-, -".•.

The transformation from date flow diagram to program structure
. (visible part at Ada program) was straightforward In this case The

modules became packages end the interfaces became entries or procedures.
These entries or procedures become properties, or resources, of one of
the modules which it connects.

Structured analysis is one of a number of functional decomposition
methodologies which derive the structure of a system In terms of the

* i transformations or functions on loqical data types. The transformations
produce the logical data types which occur in a system from the system's
other logical data types. Other functional decomposition methodologies F
which produce similar system designs are SAOT(2i), H08C17) and data
directed decomposLtionC 16).

2. information hiding.

information hidinq(Ci) is a method at modularization in which each
module hides the irrelevent Information about components inside themodule while providing access to the required information to enable useof the module. The Interface of a module provides an abstract viewC19)

of the entity enclosed within it. The entities which are enclosed In
the modules are the design decisions which must be made during the
deslan process.

To see wny It is that the design decisions are the entities in
the modules, the rational for this methodology must be described. One
at the major failings in the normal methods of designing systems Is
that they produce systems which are expensive to maintain. The reason

' that this is true Is that the systems are difficult to change. Since
* chanaing a system means changing some design decision, It follows that j

if one wants a system to be easy to change (maintain) then each design
decision must affect as little of the system as possible and there
should be as little coupling between design decisions as possible.
This last sentence was the rational which brought tne Information hiding
desian method into existence. Restated It says in order for a system
to be maintainable, It Should be designed as an Interconnection of r.
modules where each module hides the result of one design decision by
presenting for use by the other modules an abstract view o the entity
about which that decision was made.

*when a system is heino designed using this methodology, certain " -
guidelines are usel when maKina the design decisions which determine
the decompos~tion of the sybtem into components. These components
can then be independently designed, and after the system is in use,
indeoendently modified. Essentially, the information hiding auidelines 1 !
are the following(l):

1. a&e a list of all of the design decisions for which
change cannot De ruled out.

2. Encapsulate each design decision in one module. This means
that all of the programs that require the knowlege of the decision,
and on'- tnose, comprise the module,

3. Design the abstract interface. This interface consists of
the data types and procedures that the module users need to be
able to make use of the entity in the module without knowing how
it is Implemented.

AS an example of this methodology, in the design of a text editor,
tne way In which the text is stored in the editor Is a design decision. I
ror instance the data may be stored in memoryor It may be stored on a
disk file, or It may be stored In virtual memory. Also it may be stored
as an array or a list ot some kind. Therefor the entity to be designed
Is made the contents of a module. This module called DOCUMEhT.HULDER Is
shown tn FIG 4 as an Ada package specification Cie.visiole part).

package DOCUNET.OLDER Is
, " type LINE is 3TRING(LINE.LENGTH)l

type LINE.NUMBER Is private;
* Procedure CLEAR;

function E4PTY return BOOLEAN;
function NEXT.LINE return LINE.NUKBERi
function PREVIOUS.LINE return LINE.NUMBERs
function FIRST.LINE return LINE.NUMBERs
function LAST.LINE return LZNE.NURBERI
procedure I4SERT.BEFORE (LINE.NUM1in LINC.NUMBERt THIS.LNEgIn LINE)J
procedure INSERT.AFTER CLItNI.NUMtln LINE.NUNBER; THS3.LIMK3in LINE);
procedure GET.LINE (LINE.NUM:in LINE.NUMBER# THIS.LINEsout LINE);

end DOCUMENT.dDOLDER;

FIG 4.

As can be seen the Ada package specification Is just the abstract
Interface needed for this methodology. This package specifies that
OOCUMENT.HOLDER Is a collection of numbered lines which can be operated
on by using the Procedures and functions and can be Implemented in any
way as long as the implementation provides the specified types, procedures
and functions.

3. Abstract data types.

Data abstraction is a "thought tool" as well as a methodology. The
way in which the designer of a system approaches tne design Is greatly
Influenced by the language In which he expresses designs. The availability

* of data abstraction facilities In a system design language like Ada
provides the designer with the ability to modularize the system into the
loaical entities (abstract data objects) most appropriate to the problem
beign solved.

The use of abstraction in the design of systems Is one of the main
ways of reducing the complexity In the system's design, The reduction of
complexity Is accomplished by concentrating on defining only the essential

r logical characteristics of the system and Ignoring for the time being, the
nonessential implementation details of the system. This concentration upon
logical properties leads to the specification of the system as an abstract
data type, or object, consisting of the type name and the operations which
are associated with the t pe. Thus the first step in the dealgn process
results In the system beine specified as an abstract data type In Ada,
that Is a Package specification consisting of a type declaration and a set
of operations (procedures or functions) applicable to objects of that type,

Once tne system is specified, and thought of, as an abstract data
* tyoe(19), tnhe tyves and operations needed to logicaly implement the system

are conceived and specified as abstract data types. This Is accomplished
by a process of successively retinin9(16) the data abstractions in terms
of other more concrete data types. This successive refinement process Is
an Iterative process whereby the abstract data types which are needed by
the program at one level are Implemented, or represented, as data types
which are less abstract or more concrete which are then Implemented In
terms of even less abstract data types, etc* This decomposition ot
abstract data types Into less abstract types continues until the data
types needed are available directly In the programming lanquage beinq
used to Implement the system.

As an examplep a one pa.s assembler may be described at the most
abstract level aS Consisting of an assembly procedure which gets symbols
from a source file and Using a symbol table for storage puts data and [
instructions in an object file. The structure'ot the assembler is shown

ln FIG S. Ech of the named boxes Is an abstract data type.

I assembly I

/ I - --
get/ Insert \put

/ retrieve \
/ I\

I source I I symbol I I Object I

I--------I I table I I-------- I

FIGS5

rhe specification of the abstract data type symbol table as F
an Ada package Is shown In FIG 6a, Note particularly that the symbol
table Is not the set of memory locations and storage patterns that Is
classlcly thought of as describing a table, but rather It Is a se,;tof
logical operations applicable to the type symbol taole. A sianificant.
aditional advantage of decomposinq systems Into abstract data types

Is that some of the data types may be generally useful In other systems.
Since the Interface to an abstract data type Is simple, by definition
Its Interface Is the minimum necessary Information needed to use it,
the abstract data type Is the Ideal entity to build libraries around.
Ah example of a generally useful data type Is the character buffer
shown In FIG 6b.

pacKaoo SYMBOL.TABLE is
type SYM.NAME IS new STRING(20)1
type SYN.TYPE Is (INTrLOAT) task BUFFER Is
type ITEM Is entry READCC:out CHARACTER);

record entry ORITECCain CHARACTER)!y
NAYESSY4.4AME) end BUFFERr

TYPEWAY.TYPT; ..

LOCATIONIINTEGERI
end record? L

Procedure IASERT(CMBOL3in ITEM)s
procedure RETRIEVE(NAME:ln SY.NAMEI

SYMBOLIout ITEM);
NOT.FOUND:exceptlonl

-- raised by retrieve
end SYMBOL.TABLEI

rIG Ga FIG 6b

iL --

*- ..

4. Documentation.

A significant advantage of using Ada as the means of documenting
the structure of the system is that it is maintainable using the same
methods and automated tools used to maintain computer programs. In the
case where Ada is also the implementation language, the maintenance of
the design documentation becomes automatic since it is an integral part
of the implementation

The actual documentation of the structure of the system is contained
In the visible parts of the packages which constitute the specification
of the system, Since these package specifications are textually nested
as required by the language processor and formally provide only the
syntax of the abstract data types* It is wise to supplement the Ada
specification In two ways, First, since people understand the .structure
of things better when presented with a graphical representation, the

*Ada text should be supplemented with its equivalent graphical rendition
in a form similar to FIG la,

Secondly, since the Ada text provides only the syntax of the
Provided types and operations, that text should be supplemented with
both descriptive semantic information and a list of the required types
and operations, included as comments.

The system documentation should also include structured requirements
specification(12) in a form compatible with the design specification. In
addition, the development of the requirements should benefit from the use
of a structured analysis technique such as HOS (3,17). A complete system
description of the stoplight control system shown lo FIGs 2 and 3 is

* included In apoendlx I as as example of the documentation of a system
Appendix 11 provides a syntax description of Ada as a System Design
Languaae CSDL) and describes its usaqe.

V. System Comonent Design.

The design process for the three types of program units Is
basicly similar. This process is based on the small scale structuring
mechanisms of the Ada languages strong data typing, user definable
data types, structured control constructs and procedure or function
invocation. Ada provides a strong typing mechanism whereby every object
must have a declared tpe and conversion between objects of different
types is not allowed. During comoilation, this mechanism Catches a
number of design errors which occur frequently in nontyped lanauaqes.

.Types in Ada consist of the built In numeric tyoes# enumeration
types, where the Programmer defines by name the values of tne type, and
certain built In enumeration types such as boolean and character types.
Additionaly, Ada provides user defined composite types whereby the
programmer can define arrays with elements of the same type and records
with elements of different types. Ada also provides the ability to
create dynamic ooJects of any type by defining access types to those
oblects.

The control constructs consist of sequencing of statements, an
alternative choice mechanism, an Iteration construct and procedure
or function Invocation. The choice mechanism consists of three
statements, the "if then else* statements, the "case* statement and,
in the case of tasks, the "select" statement. The iteration mechanism
is the "1ooo" statement with a number of termination methods. The
basic loop Is nonterminatLng, however It can be modified by eitner
a "for" statement to loop a certain number of times, or a *while"
statement to test for a certain condition before each loop, The
procedure Invocation occurs as a statement and the function invocation
occurs In an expression thereby naming needed operations which are
defined elsewhere.

At the logical level, a procedure or function defines a single
abstract event. A package defines an abstract data type which provides
operations on oermanent Objects of the type when requested, A task defines
an abstract data type but It is active and operates In parallel With other
tasks by either providing or asking for operations with those other tasks.

A procedure Implementation# for Instance FIG 7, may declare some V
local types, objects, procedures, tunctions, packages or tasks. These
declared entities are only visible within the procedure and have a
lifetime limited to the current invocatlon of the procedure. Procedures
provide only one operation or event which can be Invoked.

procedure SORT (Ain INTEGER.ARRAY) Is -- bubble sort
procedure EXCHANGE (LEFTeRIGHTtIn out INTEGER) Is -

TEMPI NTEGERI
begin

TEKPtsL6EFTI
LEFTiaRIGHT;.
RIGHT:=TEXPi

end £XCHANGE;
begin

for LAST in reverse AIRANGE loop
for FIRST in A'F!RST..LAST loop

if A(FIRST) > A(FIRST+l) then
EXCHANGE CA(FIRST).A(FIRST+I))1
end It;

end loopi
end loop;

end SORT;
FIG 7

A packaae Implementation, for instance riG e, may also declare--
some local types, objects, procedures, functions, packages or tasks.
These declared entitles are, again, only visible within the package
but they now have a lifetime which is not limited to the Invocation of
one of the procedures In the pacKaqe's visible part, but rather last as V
long as the package lasts. Packaee specifications provide all of the
operations Whicn are allowed to be applied to the enclosed entities.

package body SYMBOL.TABLE Is
subtype INDEX is INEGER range 1.,2001
TABLEt arrayCINDEX) ot ITEMI

function FIRST.FREE return INDEX Is ,., end;
procedure INS£RT(SYNBOL:ln ITEM) Is

aegin
TA8LECFIRST.FREE):SYMBOL:;

end INSERT:
Procedure QETRIEVECNAMEIn SYN.NANEI8 MBOLlout ITEM) is

begin
for I In INDEX loop Ii

It NAMEuABLECe)oNAME then
SYMBOL~uTABLECI)i
return; [
end 1;

end loop:
raise OT.FOUNO;

end RERIEVEt
bealn

-I initialize table

end SYUBOL.TABLE:

rG e (Lple*mentation of FIG 6&) Li

A task Implementation (body) may* like a package, declare local
types, obJects, Procedures# functions, packages and tasksp but the
tasc can only export entries, ?nene local declarations have, as In
the case of packages, a lifetime equal to that of the task. The control
structures in tasks must however, be supplemented with constructs not
available In procedures or packages since the order In which entries may
be called and the syncronization with other tasks must be represented,
The structure of control In tasks Is based on the selection of those
entries which may be accepted at the current state In processing the task.
in addition the main part ot the task body Is normally enclosed In an
Infinite looo, since tasks normally run until explicitly terminated.

An example task oody for the task SUFFER of FIG 6b Is shown in
FIG 9 and a complete system based on tasks is the stoplight system
shown In appendix Is

task body BUFFER Is
SIZEsconstant INTEGER~zIC;
SuarroyCl..SIZE) of CHARACTER;
S3iOTS.MWU~ZINTEGER range 0. .SIZEu .0;
WRITE.,IMDEXREAD.INDEX: INTEGER range 1. .SIEMali

begin
loop

select
when SLOTSJFULL < 31ZE a>

accept WRITE M In CHARACTER) do
SurrcWRXTE.ItDEX) szCj
ends

4RITEwIND9Xsu WRITtWINDEX mod SIZE 41;
SLOTS.ULL : SLOTS..FUL.1j

or ohen 3LOTSWFrULL), 0 a),
accept READCCsut CHARACTER) do

CsBUFFCREAD.JNDEX);
ends

READ..INDEX&=READ..INDEX mod SIZE+i I
3LOT3.FULL: ESLOT5.rUbL- 1;

or -

terminates
end select;%

end loop;
end BUFFER:

FIG 9 (implementation of FIG fib)

The small scale structuring mechanisms In the Ada lanquage are
constraints on the structure of the components from which systems
are constructed. Their purpose is not to assist In the development
Ot algorithms but rather In forcing the Implementation of the
algorithm to clearly display tht logic of the algoritnm In terms
appropriate to the algorithm. in addition these mechaninisms cause
the Information necessary to understand the algorithm, namely the
Information used by the algorithm, to be highly localized. Thus Ada
as a proaram design language CPDL) enhances the maintainability of
the components of a system In an analogous way to the way Ada as a
System Design Language enhances the maintainability of the systeme
Tnat is, Ada enhances maintainability by constraining structure so
that the structure of the system (or program) clearly displays the
logiC of the solution to the problem and the Information necessary
to understand any vart of the system is local to that Part.

vi. Conclusions.

The use of Ado as a System Design Lanquage CSDL) Imposes some
significant constraints on the mooularizations whien can be used In
the deslon of systems, The Imposition of these constraints Is the
source of the strength of Ada as the 8DM in the same way that the
imposition of constraint on the control structure of programs Is the
source of strength ot structured programming. Good systems like good
programs have a structure that Is discerneble to the reader and
have 8 good localization of names and concepts In the component F
oarts. Thus the structured programming and the modularigetion required ,
by Ada reduces the complexityCl7) of system designs and Implementations,

The constraints which Ada Imposes on designs are In now one may
specify the components from which one can construct tne system and how
these components can be Interconnected to form the system, The specifi-
cation of a comoonent In Ada Is the specification or visible part of
an Ada package. This Is exactly the abstract Interface (19) syntax
required by tne modern modularlzation methods. A document consisting V ..i
of the Ada package specifications which constitute a system, le. an SDb
descriptlon, supplemented with Its graphical equivalent Is an Ideal
formal design description from the points ot view of understandability
and maintainaolilty(lS), hen this design description Is Implemented
In the Ada language, an additional twolold advantage is accrued. Both
the design and the Implementation mirror the structure of the Problem
and tne Aesion documentation Is automatically maintained since it Is
an Integral cart of the finished system,

LI-
I?

!I.
ip2[J7

REFERENCES.

1. Ads reference manual, July 1930.

2o Caine, S. & Gordon# E. PDL-A tool for software desian.
Proceedings, vatlona1 Computer Conterence,1975.

3, Demarco, To Structured analysis and system speciflcationPrentls Hall 1979o - -I ."
4. DeRemerr. & KronH. Programming In the large versus programming

in the small.
IEEE trans S.E. June,1976.

S. Design and Implementation of Programming languages.
SorInger-Verlag:Lecture notes In computer science (54). --

G. Dlikstra, £.w. The structure at the *THEO multiproqramminq system.
C. ACM 11 (May 1968#341-346.

7. GuttagJ. Abstract data types and the development of data structures.
C.ACM 20,6p(June 1977),396-404.

. GU$ta9,o. Notes on type abstractlon.

ProceedingsSoeclficatlon of reliable software IEEE 1979.
& IEEE Trans S.E. Jan 1960.

t 9. Haboermann,A.N. orionoL. & Cooorlder, be Podularizotion and hierarchy In"a family of ooerating systems. C.ACM 195,#CNay 1976),266-272.

10. HabermannA.k. & PerryvD. Well formed system compositions.

Carnegle Mellon Unlv. Coup Scl Rept Mar 1980.

11. higher Order Software Tech RePt no.4 AXES syntax description Dec 1976.

12. heningerK. Soeclfylnq software requirements for complex systems:
Neatechniques and their application.

- ,. Proceedings.SoecifLetlon of reliable software IEEE 1979.
V , IEEE Trans 8.1. Jan 1980,.

13. JecKsonK. Parallel processing and modular software construction. -

* Design and tmolementation of proqramming languages.
S'nringer-Verlag:.ecture notes In computer science (54).

- 14o Jensen & wlrth Pascal users manual. Springer-Verlaq.

15. Jones.C. A survey of programming design and specification techniques.
ProceedinasSpeclflcatlon of reliable software IEEE 1979.

" 16. Morris, J.. Proqrammine by successive refinement of data abstractions.
Software practice and experlence, Apr 1990.

17. Pager. 0. On tne Problem Of communlcating complex Information.
C.ACM 16,SCMay 19733,275-281.

16, Parnas, D, A technique for software module specification with examples, I

C.ACM 15,5(may 1972)f330-336.

19. Parnes, 0. Use of abstract Interfaces In the development of software
for embedded systems. NRb Report 8047.1977,

20. Rational for tne design of the Ada programming language.
ACM Sigplan notices 14#6#(June 1979)p Part B.

21. Ross,D.T. Structured analysiS(SA),A language for communicating Ideas.
IEEE Trans SE, Jan 1977.

22. Steelman. DoD HOL Requirements. June 1977.

23, Wirth,N. Program development by stepwise refinement.
C.ACM 14,4,(April 1971),221-227.

24. YourdonC. Structured walkthrough8.
Prents-1alle.

.oU.

~[7

[i

• " I. -
•I: - '

• 5:. U I.

" . .. r-- " " r " . " , ' I r

* APPENDIX to DESIGN EXAMPLE: A STOPIGHT CONTROL SYSTEM.

STOPL6IGHT DATA FLOW DIAGRAM,

The tra~nsformations of date type$ which take. Place In a stoplight
are diagrammed In the figure. The detection or non detection of a
vehicle In a Lane Is transformed Into that approach eing either
OCCUPied or empty. The state Of the approach Is transformed Into
a recuest for a green or r@d Light. This request casts the light
to ve set to redo yellow or green,

When tnese data types and their transformations are named and
connected# the following 8data flow diagram* results, This diagram
can then be used to model the structure If the system. This Method

* of design Produces modules (transformations) whose descriptions
are the Interfaces between the modules* This structure Is easily
modeled In Ada where the modules become Packages or Tasks and the
Interfaces become the visible parts of these modules Cieo types,
obieCt, Procedures or entries).

Approach Requestre
* vehicle ---.- Occupied -m---red *------set --- yellow

I------- >lDetectorl ------- >IApproachl -----)Intersecton--)lblghtl---->
-r-n-r-empty lControl 1green I Control I -""-o- green

- .. -... S - .-

• '.STOPLIGHT REUIREMENTS SPICIFICATION.

1 , INTRODUCTION, .- This reourIN ts specification describes a Stoplight System

P and its components, The description uses module descriptions to
describe the system itself and each of the hardware end software
components. ino module descriptions give only the external

* behavior (Interlace characteristics) of the system or component.
* These interface characteristics are Just the ViSaole behavior of
... tne module and are described Independent of other modules wnich

ths module may be connected too This means that. for instance#
1 hardware modules descriptions refrain from desrlbing the system

effects which the module causes or displays. Software modules
likewlse refrain from describing their effect on either the
hardware or other software modules out merely the functions
that it Drovldes,

2. STOPLIGHT SYSTEM. e, c

MODULE NAMES 8TOP.bZGAT

BEHAVIORS The stoplight system controls a signal at a four
way Intersection. It detects vehicles in an approach area of

IL each aoproachinq lane of the intersection and provides a green
liQnt to occupied lanes, .

"' when no lanes are occupied all lights are red.
when a lane becomes occupied the light in Its direction

Is made green,
As long as the lane remains occupied the light In Its

direction remains green. If however, a lane In the opposite
direction becomes occupied then# after 15 seconds, the light
in the current direction goes through yellow to red and the
licht In the opposite direcbion becomes green.

arhen a lanes In a direction beoee empty the light in r
tnet direction goes through yellow to redo

3e HARDwARE MODULESS

NODULE NAMES DETECTOR,,

BEHAVIORS Detects when a lane approach becomes occupiedand slinals that Its lane Is occupied (te generates an

occupied interrupt)o Detects When a lane becomes empty andSignals that its lane Is empty (I** generates an empty -

Interruot)o
There are two detectors, one which responds to lanes

In the nortn-soutn direction (the north detector is ORed
with the soutn detector), and one of which responds to the
east-west direction.

CHARACTERISTIC VALUES:
4-s OCCUPIED) INTERRUPT AT LOCATION 8
Noe EMPTY o> INTERRUPT AT LOCATIOK 16
E-W OCCUPIED a) IbTEPRUPT AT LOCATION 12

E0w EMPTY a) INTERRUPT AT LOCATIOO 20
aamicammeaclcmccm cccinmlmmlm l iilmlilcammmclllmlicam iinmccmilal m

-

mmmcccWWMI em. m -0ow"a mein a mea Mama.. a fta m.=af - me.. anm m mmmc." a mm -tvM f Maw mm a

AODUIaE NAME: LIGHT

PROVIDES: Tvpe COLOR is CRED#YELLOW#GREEN)
LIGH4T(N.StE.W)

BEHAVIOR: LIGHT aarrayCN..8.E.W) of three lamps with redoyelLow and
green filters. Each lomp can be on or off,

CHARACTERISTIC VALUES:
LIGHT a LO0CATIONS 76,90
RED b 100
YELLOW a b 010
GREEN a b 001

4. sOrTWARE MODULES,

MODULE MARC: APPROACH.CONTROL

PROVIDES: LAIE.OCCUPIED
LAI4E..EMPTY
LOOK.AT(LANE)
CYCLE

REOVIRES: REOIJE?.RED
REQUEST.GREEN

OEHAVJORs Model state Cematyp occupied) o! lone.
LANE.OCCUPIED Causes Occupied 6 REQUESTaGREEN,
LANdE.EMPTY causes empty a REQUIST.RED.
LOOK.AT shows state.

* CYCLE behaves lKe EMPTY followed oy OCCUPIED.

MODULE NAME: INTERSECTIONeCONTROL

PROVIDES: REQU.ESTcRED
REQ UEST.GJPEEN

REQ~UIRES: LOOK..ATCLIGNT),LOOK.ATCLANE) .SET.TOCCOLO0R)CDIR) .CYCLE

- E~hVIOR: when lights are red REQUEST.GPEEN causes
SET.TO(GREEN) (MY.DIRECTION)o
when Its liqnt Is green REQUEMT.EO causes
SET.TOCYELLOW)CAY.,DIRECTION) then 3ETmTOCRELD)M~MYDIRECTION)e

Ohien Its light Is green AND Its approach Is continuously
occupied AND# atter 15 seconds# the other approach becomes
occupied cause CYCLE.

MODULE NAME: SIGNAL.COJTROL

PROVIDES: SET.TOCCOLOR) (DIRECTION)
a LOOK.AT (LIGHT)

REGUIRS3 LIGHTCDIR)CCOLOP(ON.oFF)

&CHAVIOR: Nocel state (9-.9,.4(IILWGEN of light.
SET.TO causes LJGHTCDRECTIDN)sm COLOR.
LOOK.AT copies the state of LIGHT.

STOPLIGHT CONTROG SYTEM4 DIAGRAMV

INS CEW) I

I I bAME,.OCCUPIED ILANE.EPCCUPIED
I LAZE..KMPTY I LANEEP!PTY

I APPRDACII.CONTROb I I APPROACHCONTROLI
I (. I I CE.W)f

I ILOOKmAT I ILOOK.ATr
IREOUEST.GREEN I (LANE) IREOUE3T.GREEN I (LANE)
IREOUESTUPRED (CYCLE IREQUEST..RED ICYCLE

I I v
Immam~mmmmmm~main(LOOKI.AGAIN Inmnnmnwnmraw

I INTERSECTIONeCONTROLI~u~m--- a ----I INTERSECTION.CONTROLI
I CN4.3) twft--**-.m-.I~ CE..W)

m~mmin~aammmmmm ILOOKESAGAIN Imaawammii~.IF
a A

/ U-.

LOOK.AT (LIGHT)
la~wmm~mm ETTO (COLOR) *mmmmammmmml

I / SIGNAL I

I .CONTROL I

I ICOLOR

I I IOF
I

I~ .1 1LGHT II

7-1

* procedure STOP.LIGHT.CONTROL.SYSTE4 Is *-Main program
-System Specitication

type DIRECTION Is (N...,E..u)j -- SOL

package DETECTOR Is
task type DETECTOR.EPASK

*DETECTORtarrayCDIRECTION)of DETECTOR.TASKI
mDetects vehicles In the approach to the Intersection and
sianals the approach controller In Its direction When theI , mmapproach becomes occupied or empty.

* m--REQUIRES: LANE.OCCUPIEDp ILANE.EMPTY
end fETECTORI

package APPROACH is
tyc LANE is CEMPTY#OCCUPIED);

taktype CON4TROL.TASK Is
entry LANE..DCCIUPIED; meinterrupto
entry LANE.EI4PTYi --Interrupt,

* entry LOOK.ATCLtout LANE);I
entry CYCLE1 --Behaves like EMPTY followed by OCCUPIED,

mOCCUPIED causes a request for a green light,
EMPTY causes a request for a red 1ight,

entry INITIALIZE.TODDRsIn DIRECTION);
end CONTRIJL.TASKS

K CDNTROL:array(DIRECTION)ot CONTROL.TASK;
for CONTROL(DIRECTION'FIRST).LAE.OCCUPIED use at 91
f or CO'TROLCDIRECUZONILAST).LANEU.OCCUPIED Use at 12;
for CONTROLCDIRECTIOrJFIRST).LANE.EMPTY use at 16;
for CONTROLCDIRECTIOJLAST).LANE.ENPTY use at 20;

--PEOUI RESS REOUEST.GREEN I REQUEST'.REDs
end APPROACH;

* package INTERSECTION IS
task type CONTROL.TASK 15

K entry REQUFST.REOF
F entry REQUEST.GREEN;

entry LOOK.AGAINF -m look at the light and the Intersection again.
entry INITIALIZE.,TOCDIR3in DIRECTZOR)l
end CONTftOb.TASK;

CONTROL:array(DIRECTION)ot CONTROL.?ASK#
mProvides green lights to occupied roads and red lights to--
empty roads while alternating when necessary.

--REOUIRFS1 LOOK.ACLIG4T)i LOOKE.ATCLANE)i SETmOCCOLOR)CDIRECTION);
mm CYCLEi OTHER.D!REC'?ION.LOOKm.&GAINI

end INTERSECTIO41

package SIGNAL Is57
* type COLOR Is (REDpELLOWCREEN)l

for COLOR Use (REDa)2s100eYELLO~amo260i0O.GRELN=uo2eO~ls)I
* ~ type STOP.LIGHT Is orraycDIRECTION) of COLORj

LIGHT:STOP.bIGHTtxCREDPRED) v
for LIGHT use at 761

task CONTROL is
entry S1Er.TO(COOk) COIRa in DIRECTLO4)
entry bOOK.ATCLsout SOP.1LIGHT);

mm 5fs light In one direction to redfyellow or green
mmwfle setting other direction, to red.

end CONTROLI
emlncludes the module LIGHT from wnicft It 7 --

* *. ~g4R~dhbmm m 3peeificatIon

vackage body DETECTOR Is --begin system Implementation

end DETECTOR; -radae

package body APPROACH Is
task body CONTRJLU.TASK is .

MYinLANEtLARE :uEI4PTY;
mY.,DIR:DIRECTION

begin -- APPROACHeCONTROL.TASK
accept INXTIAIZEETO(MY.DIR~inT DIRECTION); --learn my direction
loop

select
accept LOOK..ATCLWout LANE) do

end;J
or accept LANE.OCCUPIEV do

NY..LANEIZOCCUPIEDs
INTERSECTION.CONTROLCNY.DIR) .REQUEST..GREEN;
endl

or accept LANE.EMPTY do
'4 LILAIJE:I EMPTYI
INTERSECTIOI.CONTROLCMY,DIR) .REGUE3T.RED;
end;

or accept CYCLE; --simulate break in steady stream of traffic.
it 'Y.LA'EOCCUPIED THEN -- If necessary*
TITRSECTXONCNTROLCMY.DIR) .REQUEST.PRED; I_
ITERSECTIONeCt.TROLCMY.DIR) .REQUEST..GREEN;

end It;
end select?

end loopy
end CONTROL.TASKI

end AIPPROACH;[

package body INTERSECTION is
task body C04TROL.TASK L5 j
MY-DIRIRECTION;
OTFIERU.DLR DIRECTIOd;
OTHERU.LAVEtIAPPROACH.LANE:
LIGHT: SIGUAG*STOPLIGHIIT

begin -- INTERSECTION*CONTRO..TASK
accept INITIALIZE.TOCNY.DIRsin DIRECTION) do --nlearn my direction

If MY..DIR=DIRECTIOPE'LAST then
OTHER.DIR :zDIRECTION'F!RST;

else
OTHER..DIRZEDIRECTION'SUCC'4r.DIR)I

end if;
end !NUTIAblZE.TO;
loop I
SIGaAL.CONTROL*L0OK.ATCLIGHT);
select

when LIGHT*(RED#RED) u)o
*accept REOUES?.GREEN do

SIOmAL.CONTROL..SETmTOCGREEN) (MY..DIR) I
JNTi.RSECTION.CONTROLC(OTHE..DIR) .LOOK.AGA!NI

end;
or when LIGI4TCNT.D!R~uRED w)o -- catch etra red roauests

acceot REQU EST.,E Of

or when LZGHT(MY.DrR)=GREEN 9>
acceot REQUE3T.RED do

SIGNAL.,CDNTROL.SET.TOCYELLOW) CML.DIR);
delay 3*SECONDS;
SIGNAIJ.CONTROL.SET.,TO(RED) CMY.DIR)I
!NTERSECTION.CONTROL(OTHER.DIR) .LOOK..AGAIN;

ends
or when LIGHTCMY.D1R)zGREEN 8>

delay 15ISECONDSI
NPPROACH.CONTROL(OTHER.DIR).LOOI(.AT(OTKER..LANE);
It OTHER.bAEOCCUPIED then

APPROACK.CONTROLCI4Y.DZR) .CYCLE;
end Its

or accept LOOK.AGAINI
end select:

end loops
end CONTROL.TASK;

end INTERSECTIONI

pacKage SIGNAL Is
task body CONTPOL Is

beamn -- SIGNAL.CONTROL
loop

select
acceot LOO'(.AT(Liout LIGHT?) do

L:=LIGHT:
end; -

0r ahen LIGHTaCREDPRED) 8>
accept SET..TOCGREEN)CDIR% In DIRECTION) do
LI'GIT(9IR)txGREN

end;
or accept SET.TOCYELLOW)COIRtln DIRECTION) do

LjGIITC0IR) :YELLOw;
end;

or accept SET.TOCRED)(DIR:ln DIRECTION) do
LIGHIT(DIR) gatEDI

ends
end select;

end loo01
- end CONTROL;

end SIGNAL?

beamn -- STOP.ELIGHT.CONTROL.SYSTEM Main program
for D~IP in DIRECTION loop --maKe controllers aware of their. directions

APPROACI4.CONTROLCDIR) ,XN!TIALIZE1.TOCDIRt)I
INTEPSECTIO4.CONTROLCDIR) .INITIALIZE..TOCDIR);

end loop;
end STOP.LIGII?.COtTROLmSYSTEP#* End system rmplementatlon

F
APPENDIX 1L1 SYSTEM DESIGN LANGUAGE

SYNTAX INFORMATION

SYNTAX SUMMARY

compilation t: icompilation.unit)
compilation.unit ::a (WITH unit.name(,unLt.name))subprogram.declaratlon;

I (WITH unlt.name(eunit.fname))subprogram.body-
I (WITH unlt.name(unit.name))package.declarationI
I (WITH unlt.name(,unlt.name))Dackage.ody;
I (WITH unIt.name{unt.name))suounit;

Subproqram.declaration :a: PROCEDURE IdentifierCformal.part]
I FUNCTION ldentifLertformal.part]RETURN type P

subproarem.body 3:2 subprogram.declaration IS
(declarative.item)

SEGIN
(statement) F

END
package.declaration s:z PACKAGE Identifier IS

ideclaritive.item)
(PRIVATE F
Ideclaritive.item)]

END
CaCKage.body :I= PACKAGE BODY identifier IS

(declarltlve.item0
(BEGIN

(statement))

E N~ D
subunit ::z SEPARATE(unit.name) subunlIt.body
declerativeq.item : := oblect.declaration

I type..declaratlon i
I subprogram.declaration
I package.declaratlon
I task.declaration

RATIONAL AND USAGE [
In Ada, system structure has two views: The textual system structure

and the physical system structures The textual system structure is the
textual layout of the program and Is portrayed by the systematic nesting
of program units(packages, subproqrams and tasks) within declarative
arts of other proaram units. Also, the specification of a program unit
tie. its Denavlor definition) Is textually separate from the body of that L
program unit(ie. Its Implementation). This textual structuring of the
system accomplishes tn6 grouping of semantically related units and
controls the scope of names in the system.

The physical system structure Is the grouping of program units Into
compilation units. Each orogram unit specification and body is a
compilation unit and is compilable separately from the other compilation
units. The viSiDIlitV, or allowed usage, of items declared In other
compilation units must be provided explicitly, using a *ITH~other.unit)
clouse*, in a compilation unit, This allows precise control of the names
usable In a unit.

The textual structuring mechanism provides the basic control of the
visibility of named entities via nesting and separation of behavior from
1mvlimentation, wnile the pnysIcaj structuring mechanism provides the
additional capability 'of explicit control of the dependencies of units
on other units ohlcn are textualy visible to the unit.

Textually, a system In Ada Is normally presented as a procedure,
giving a name to the.system, which has a (large) declarative part. The
declarative part consists of typos and objects global to the system, a
seauence of package specifications which define the components of the
system and a sequence of package bodies which Implement the components.
The (small) sequence of statements of the *main" procedure serves to
Initialize the components and start the operation of the system.

For example, textually a system appears like the following:

procedure SYSTEM Is
tyoe GLOSAL.TYPES is -
OBJECT TYPE;

ooo

oac;age FIRST Is
type Is*.
OBJECTS see
procedure specifications

function specifications
end FIRST;
Package SECOND Is

end SECONDI

package THIRD Is
eoo

end TIRD;

package body FIRST Is
type see
OBJECTS ..
Procedure bodies

function bodies
end FIRSTI
aCRaqe body SrCOWD Is

00e

end S£COqD,
package body THIRD Is

end T$IRDJ

bein -- sequence.of.statements
Initialize$
start$

end STSTE[j

Layered on too of this textual structure IS the physical structure
ot comoilation units, This provides three advantages not Possible with
lust textual Structuring$

Separactlity of the development of coiponents from one anothert
therevy allowing the development at components in Parallel,

Increased control of the development of the systemp since the
deslaner nos control of the design CspecIfication parts) while the
programmiers have control of only their component's Implementation.

increased clarity In the design* Since dependencies among modules
are made explicit by the use of *with* clauses,

The above example can be divided Intb compilation units In either
of the following two ways: (dashed lines separate compilation units)

C0OLLECTION OF UNITS UNIT WITH SUBUNITS

package GLOBALa is Procedure SYSTEm Is
tyoe GLOBAL .. type GLOBAL ei
OBJECTS:GLOBAL .. OSJECTSIGbeBAL so

mammamama aaaaaaaaapackage FIRST is
with MGOMA) see

*package FIRST is end FIRST;
Package body FIRST Is separate;

end FIRSTI Package SECOND Is

With (CLOSALb'IRS?) end S;CON(D:
VaCKag@ SECOND Is package body SECOND Is separate:

begin
end SECUOJDF

a maa, a amama a mama aamaend SYSTEM;
with (CLiOdAL.,SECOND) aaaamaamamaam

procedure SYSTEM4 is separate CSYSTEA)
package body FIRST Is

* end ;;STEMI
a a mama a a a aam a ma amend FIRST: 4

Dackage tiody FIRST Is aaaaaaaaaaaaaaaamm

separate CSYSTEN)r
end FIRST: package body SECOND Is

PaC~age body srCnuo is end SECOND:

end $ECONDI

both Of these have the Same textual nesting but the physical
layout of tne first (coLlection of units) Is more flexiole and oetter
controls the dependencies of components Cpackaaes) ucon one another,
whereas the second (units with subunits) provides an exposition of

* the textual structure of the system In a sij~gle DOCKG90 (iee SYSTEM).
Large systems will probably benefit more from the first style due to
its tioriter control of structure and greater potential for parallelism
in devolopment wnereas spall systems may benefit from the ease of
manaoing the des12n within one unit provided by the second Style*

Tasks are prooram units but they are not compilation units* Since
most embedded computer systems will need to use tasklnQ, the ability
to provide tasks as compilation units can be accomplished as tollowss

The task tyoe, Its needed type definitions and the tasK object(s)
are declared in tne specification Part of a package whose sole purpose
Is to encapsulate the task. The package Is then viewed as the component
and tne body of tne task can be separately compilable by maxing it the
subunit of the pacKaoe specification, For example:

packaae PACKAGE.NAME is
types ...

tasK tyoe TASK.TYPE.NAME is
entry FIRST;

see

end TASK-TYPENAME;
task body TASK.TYPE.NAME is separate;

TASK.OBJECTS2TASK.TYPE.NAME;
end PACKAGE.NAME;

separate (PACKAGENAME)
task body TASK.TYPE.NAME. is

end TASK.TYPE.NAME;

cc mc... mc....mc... m.

'A

hA

*4 7

A4f

0WOW

